MEMO

Vught
5261 LM | 12
ra-plus.nl

Onze referentie
Bijlagen
: 6 november 2023
: CRA Vastgoed B.V.
: Jarno Weyers
: 22072.2 D. 14 MEafwatering 01-C jwe
: 22072.2 SOTO1-C
: Afwateringsontwerp Mariakerk Valkenswaard

1. Introductie

1.1. Algemeen

Aan de Warande 8 en 10 te Valkenswaard, is CRA Vastgoed B.V voornemens om de Mariakerk te transformeren naar 21 appartementen. Daarnaast worden er ook 7 grondgebonden woningen gerealiseerd op de overige gronden bij de kerk. In het onderstaande figuur (Figuur 1) is de projectlocatie weergegeven.

Figuur 1 Projectlocatie

In de huidige situatie zijn er in totaal 48 parkeerplaatsen op een versteend plein, in de toekomstige situatie krijgt het plein een nieuwe inrichting daarnaast zal er ondergrondse infiltratievoorziening worden gerealiseerd.

1.2. Nieuwe uitgangspunten Hemelwater

+ Voor het hemelwater afkomstig van zowel de daken als de verharding geldt een bergingseis van 20 mm ;
+ Wanneer er een grotere toename is van $500 \mathrm{~m}^{2}$ aan verhard- en/of dakoppervlak dan geldt voor de toename van het afwaterend oppervlak een bergingseis van 60 mm ;
+ De Mariakerk betreft bestaande bebouwing, hiervoor geldt geen bergingseis;
+ Al het hemelwater dient ter plaatse te worden verwerkt middels infiltratie. Door de gemeente Valkenswaard is geen concrete ledigingseis gesteld. Gebruikelijk is een maximale ledigingstijd van 24 uur;
+ Voor het Warandeplein zal een extra mogelijkheid worden meegenomen om het plein voor 50\% in waterdoorlatende verharding uit te voeren. Van deze waterdoorlatende verharding wordt 75\% van het verhard oppervlak als afwaterend gerekend;
+ De gemeente Valkenswaard heeft in het overleg van 11-09-2023 aangegeven dat het toepassen van infiltratiekratten geen optie is voor de situatie ter hoogte van het Warandeplein;
+ De infiltratievoorziening dient mantoegankelijk te zijn en eenvoudig reinig/inspecteerbaar.

2. Gegevens en uitgangspunten

2.1. Ondergrondgegevens

De bestaande bovengrond bestaat op basis van de resultaten uit een doorlatendheidsonderzoek van Econsultancy uit zwak tot matig humeus, matig siltig, matig fijn zand. De ondergrond op de projectlocatie bestaat uit matig siltig, zeer fijn tot matig fijn zand. Plaatselijk komen er leemlaagjes voor in de ondergrond.

Tijdens het doorlatendheidsonderzoek is de grondwaterstand in een peilbuis (op de projectlocatie) waargenomen op $2,91 \mathrm{~m}-\mathrm{mv}$. Het maaiveld is gelegen op ca. $25,50 \mathrm{~m}+\mathrm{NAP}$ wat overeenkomt met een grondwaterstand van ca. 22,60 m +NAP. Echter is dit een momentopname. De meetdatum was op 22 september, dit betreft een periode met een lage grondwaterstand. De gemiddelde hoogste grondwaterstand (GHG) en de gemiddelde laagste grondwaterstand (GLG) zijn niet opgenomen in de rapportage.
Om een beter inzicht te krijgen van de grondwaterstand ter hoogte van de projectlocatie zijn er via Grondwatertools, grondwatergegevens opgehaald uit de omliggende omgeving (250 meter vanaf de projectlocatie). De hoogst gemeten grondwaterstand bedroeg 23,72 m +NAP. Naar verwachting zal de
ingenieurs
hoogst gemeten grondwaterstand ter hoogte van de projectlocatie ongeveer overeenkomen met deze waarde. De hoogste grondwaterstand komt hiermee op 1,9 m beneden maaiveld.

Figuur 2: Gegevens dichtstbizijijnde peilbuis
Voor aanvullende informatie is overleg geweest met gemeente Valkenswaard. Zij kennen in de omgeving meerdere grondwaterpeilbuizen. In Fout! Verwijzingsbron niet gevonden. is de informatie van de dichtstbijzijnde peilbuis opgenomen. Hieruit blijkt eveneens dat de hoogst gemeten grondwaterstand ca. $23,70 \mathrm{~m}+\mathrm{NAP}$ is.

Om de exacte GHG te bepalen op de projectlocatie wordt geadviseerd om de grondwaterstand over een langere periode ter plaatse te meten.

Door Econsultancy zijn drie verschillende doorlatendheidsproeven uitgevoerd. Om de k-waarde van de bodem te bepalen is de falling head methode (omgekeerde Hooghoudt methode) toegepast. De gemiddelde doorlatendheid ter plaatse is bepaald op $3,13 \mathrm{~m} /$ dag. De ondergrond op de projectlocatie kent dus een goede doorlatendheid.

2.2. Systeemkeuze hemelwaterberging

Op de projectlocatie komt voornamelijk bebouwing en verharding voor, er is onvoldoende beschikbare ruimte om een bovengrondse voorziening te realiseren. De voorziening dient dus ondergronds te worden aangelegd. Mogelijke ondergrondse voorzieningen die toegepast kunnen worden zijn:

+ IT-riool
+ Infiltratiekratten
+ Waterblocks
+ Trewatin kelder

Het bergend vermogen van een IT-riool is afhankelijk van de diameter. Door het IT-riool met drainzand te omhullen kan extra berging gemaakt worden bij een kleinere diameter. Lava en drainzand hebben een bergend vermogen van ca. 25%. Het voordeel van een IT-riool is dat het goed te beheren is. Het riool is goed te reinigen en inspecteren.

Als bergings- en infiltratiesystemen kunnen Trewatin systemen of Waterblock worden toegepast omdat deze goed reinigbaar en inspecteerbaar zijn. Beide systemen betreffen een betonnen constructie waarbij het Trewatin-systeem bestaat uit prefab betonnen elementen en het Waterblock-systeem ter plaatse wordt gestort.

Door het toepassen van infiltratiekratten welke een bergend vermogen hebben van 95% kan veel berging worden gerealiseerd met minder grondverzet.

Om optrekkend vocht te voorkomen is het advies om de infiltratievoorzieningen minimaal $2,0 \mathrm{~m}$ uit de gevellijn te houden.

De gemeente heeft in het overleg op 11-09-2023 aangegeven dat het toepassen van infiltratiekratten voor het openbaar terrein geen optie is. Echter zouden deze wel toegepast kunnen worden op het terrein van de individuele woningen. Daarnaast zal de variant met een IT-riool verder worden uitgewerkt, de gemeente stond hier positief tegenover.

Het toepassen van Waterblocks of een Trewatin systeem is niet mogelijk ter hoogte van de projectlocatie aangezien de gemiddeld hoogste grondwaterstand naar verwachting te ondiep ligt. De systemen kunnen hierdoor niet mantoegankelijk worden gemaakt.

2.3. Huidig verhard- en dakoppervlak

In de huidige situatie bestaat de projectlocatie uit het gebouw van de Mariakerk, een verhard plein met een aantal bijgebouwen. Op basis van het verschil tussen het huidige verhard- en dakoppervlak en het nieuwe ontwerp kan de bergingseis voor de projectlocatie worden bepaald (paragraaf 2.6). Het onderstaande figuur (figuur 2) toont de huidige inrichting van de projectlocatie. De onderstaande tabel (tabel 1) toont het verhard- en dakoppervlak en de oppervlaktes van het groen op de projectlocatie.

Buiten projectlocatie
Terreinverharding

Bebouwing

Groen

Figuur 3 Huidige oppervlakteverdeling
Tabel 1 Huidige oppervlaktes

Onderdeel	oppervlak in m^{2}
Dakoppervlak	1582,8
Terreinverharding	2231,7
Groen	1951,0
Totaal	$\mathbf{5 7 6 5 , 5}$

2.4. Nieuw verhard- en dakoppervlak

Op basis van het nieuwe inrichtingsontwerp is het verhard- en dakoppervlak bepaald voor de toekomstige situatie. Het verhard oppervlak op de projectlocatie is uit te splitsen in dakoppervlak en terreinverharding. Voor de tuinen wordt nog 50\% verharding gerekend. Het Warandeplein wordt als volledig verhard gerekend. Als extra mogelijkheid zal er een berekening worden gemaakt voor het Warandeplein wanneer het voor 50% in waterdoorlatende verharding wordt uitgevoerd. Bij waterdoorlatende verharding wordt 75% als verhard gerekend aangezien hemelwater bij hevige neerslag toch tot afstroming komt. Daarnaast wordt er onderscheid gemaakt tussen het dakoppervlak van de Mariakerk, de bijgebouwen VVE en individuele woningen

De onderstaande afbeelding (Figuur 4) toont een overzicht van de verdeling. In Tabel 2 zijn de nieuwe oppervlaktes opgenomen. De Mariakerk zelf wordt niet meegerekend in de eis aangezien er aan het dakoppervlak niets veranderd.

Figuur 4 Oppervlakteverdeling woningen

Tabel 2 Nieuwe verharde- en dakoppervlaktes

Onderdeel	oppervlak in m²2
Dakoppervlak Mariakerk	1442,1
Dakoppervlakte bijgebouwen VVE	135,5
Tuin Mariakerk (50\% verhard)	729,5
Dakoppervlak individuele woningen	648,5
Tuin individuele woningen (50\%	420,4
verhard)	1846,1
Terreinverharding Warandeplein	161,7
Openbaar groen (Warandeplein)	381,7
Overige terreinverharding	5765,5
Totaal	

2.5. Toename in verhard- en dakoppervlak

Op basis van het verhard oppervlak in de huidige situatie en conform het nieuwe inrichtingsontwerp is het verschil in oppervlaktes bepaald. Hierbij is het groen en de bestaande bebouwing van de Mariakerk buiten beschouwing gelaten, daarnaast is er geen onderverdeling gemaakt in de verschillende (soorten) dakoppervlaktes. De onderstaande tabel (Tabel 3) toont de verschillen met betrekking tot de huidige situatie en de nieuwe situatie.

Tabel 3 Verschil in verhard- en dakoppervlak huidige en nieuwe situatie

Onderdeel	Huidige oppervlaktes in m^{2}	Nieuwe oppervlaktes in m^{2}	Verschil in verhard/dakoppervlak
Dakoppervlak	326,4	784	$+457,6$
Terreinverharding Warandeplein	1981,4	1846,1	$-135,3$
Overige terreinverharding	250,3	381,7	$+131,4$
Verharding tuinen	0	575	+575
Totaal	2558,1	3586,8	$+\mathbf{1 0 2 8 , 7}$

Uit de verschillen in oppervlaktes blijkt dat er een toename is van $1028,7 \mathrm{~m}^{2}$ aan afwaterend oppervlak. Wanneer het Warandeplein voor 50% wordt uitgevoerd in waterdoorlatende verharding dan zal de toename van het verhard oppervlak $797,9 \mathrm{~m}^{2}$ bedragen.

3. Dimensionering hemelwatersysteem

3.1. Bergingscapaciteit hemelwatersysteem

Op basis van de verschillen tussen het nieuwe inrichtingsontwerp en het huidige verhard- en dakoppervlak kan de bergingseis en de benodigde bergingscapaciteit worden bepaald. Voor het bestaand verhard oppervlak van $2558,1 \mathrm{~m}^{2}$ geldt een bergingseis van 20 mm , voor de toename van het verhard oppervlak van 1028,7 m^{2} geldt een bergingseis van 60 mm .

In het ontwerp zal voor de tuinen van de individuele woningen, het dakoppervlak van de individuele woningen en het dakoppervlak van de bijgebouwen VVE (totaal $967,5 \mathrm{~m}^{2}$) gerekend worden met 60 mm . De onderstaande tabel toont de benodigde bergingscapaciteiten op basis van de bergingseis. Tabel 5 toont de benodigde berging per voorziening (bergingsvoorziening onder Warandeplein en bergingsvoorziening individuele woningen).

Tabel 4 Benodigde bergingscapaciteit

Onderdeel	Oppervlaktes in m^{2}	$60 / 20 \mathrm{~mm}$	Benodigde berging in m^{3}
Dakoppervlak bijgebouwen VVE	135,5	60	8,1
Dakoppervlak individuele woningen	648,5	60	38,9
Verharding Tuin Mariakerk	364,8	20	7,3
Verharding Tuin individuele woningen	210,2	60	12,6
Overige terreinverharding	381,7	20	7,6
Terreinverharding Warandeplein	1846,1	20	36,9
Totaal			$\mathbf{1 1 1 , 4}$

Tabel 5 Benodigde berging per voorziening

Onderdeel	Benodigde berging in m^{3}
Berging Warandeplein	59,9
Berging individuele woningen	51,5
Totaal	$\mathbf{1 1 1 , 4}$

De bergingsvoorziening onder het Warandeplein zal worden uitgevoerd in de vorm van een IT-riool met een omhulling van drainzand. De onderstaande tabel toont de benodigde afmetingen van het ITriool in combinatie met de hoeveelheid drainzand. Het bergend vermogen van drainzand bedraagt 25%. Het volledige ontwerp is opgenomen in de bijlage (bijlage 22072.2 SOT01-B).

Tabel 6 Overzicht IT-riool met drainzand Warandeplein

| Onderdeel | Afmeting
 IT-riool
 $(2 x)$ | Hoeveelheid
 drainzand
 perm
 $\left(m^{3}\right)$ | Beschikbare
 berging
 perm
 $\left(m^{3}\right)$ | Lengte |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Beschikbare |
| :---: |
| berging |$~$| Benodigde berging |
| :---: |

De bergingsvoorziening van de individuele woningen zal worden gerealiseerd in de vorm van infiltratiekratten. Voor de woningen aan de St Lucasstraat is een andere vorm en afmetingen haalbaar in de achtertuin dan voor de woningen aan Achter de kerk. In onderstaande tabel zijn de benodigde afmetingen opgenomen.

Tabel 7 Overzicht infiltratiekratten individuele woningen

Onderdeel	Afmetingen in m	Bergingscapaciteit in m^{3}
Infiltratiekratten individuele woningen	$3,2 \times 1,6 \times 1,32$	$(3,2 \times 1,6 \times 1,32) \times 0,95=6,4$
Achter de kerk (6x) (per woning)	$6,4 \times 0,8 \times 1,32$	$(6,4 \times 0,8 \times 1,32) \times 0,95=6,4$
Infiltratiekratten individuele woningen		
St Lucasstraat (3x) (per woning)		

3.2. Ledigingstijd

Om de ledigingstijd van de infiltratievoorzieningen te kunnen berekenen is de k-waarde van de grond bepalend. Uit onderzoek is gebleken dat deze $3,13 \mathrm{~m} /$ dag bedraagt. Met het oog op de onzekerheden in de praktijk en het teruglopen van de infiltratiecapaciteit door vervuiling houden we een veiligheidsfactor van 2 op de gemeten waarde aan om de rekenwaarde te bepalen. In de berekening wordt dus uitgegaan van een doorlatendheid van respectievelijk 1,57 m/dag.

Zoals eerder benoemd is er geen concrete ledigingseis gesteld door de gemeente Valkenswaard maar is een maximale ledigingstijd van 24 uur een gebruikelijke richtlijn.

3.2.1. Lediging infiltratiekratten

Conform de richtlijnen opgenomen in de Kennisbank Stedelijk Water van Stichting Rioned wordt geadviseerd om bij ondergrondse infiltratievoorzieningen het bodemoppervlak niet mee te rekenen omdat wordt verondersteld dat de bodem geleidelijk dichtslibt. Dit geldt vooral bij belasting door met slib vervuild regenwater. Het vuil zal snel bezinken waardoor het effect van dichtslibben meer effect heeft op de bodem dan op de wanden. Van het totale wandoppervlak mag conform de richtlijnen 60\% als infiltratieoppervlak gerekend worden vanwege de variatie in vullingshoogte tijdens vullen en infiltreren.

Tabel 8 Ledigingstijd infiltratiekratten

Onderdeel	Afmetingen in m	Ledigingstijd in dagen	Ledigingstijd in uren
Infiltratiekratten (ndividuele woningen Achter de kerk (6x) (per woning)	$3,2 \times 1,6 \times 1,32$	0,54	13,0
Infiltratiekratten individuele woningen St Lucasstraat (3x) (per woning)	$6,4 \times 0,8 \times 1,32$	0,4	9,6

Uit de berekeningen van de infiltratiekratten blijkt dat de ontwerpen voldoen aan een ledigingstijd van 24 uur.

3.2.2. Ledigingstijd IT-riool

Voor het bereken en van de ledigingstijd van IT-riool met omhulling is er sprake van twee infiltratiecapaciteiten. De infiltratiecapaciteit vanuit het IT-riool naar de omhulling en de infiltratiecapaciteit vanuit de omhulling naar de ondergrond. Beiden dienen getoetst te worden om vast te stellen wat de maatgevende infiltratie is.

Conform de richtlijnen opgenomen in de Kennisbank Stedelijk Water van Stichting Rioned geldt voor een infiltratiebuis dat bij een gemiddelde vulling van 60\% van de buis, globaal 40% van het wandoppervlak als infiltratieoppervlak mag worden gerekend.

Voor de omhulling geldt conform de richtlijnen van de Kennisbank Stedelijk Water dat hiervan het bodemoppervlak volledig en het wandoppervlak voor 50% als infiltrerend mag worden gerekend. De doorlatendheid van drainzand is vergelijkbaar met de doorlatendheid van grof zand en bedraagt ca. 30 $\mathrm{m} /$ dag. In de berekening hanteren we hiervoor eveneens een veiligheidsfactor van 2 waardoor de rekenwaarde voor de doorlatendheid $15 \mathrm{~m} /$ dag is. De resultaten van de berekening op basis van bovenstaande zijn in onderstaande tabel 9 opgenomen.

Tabel 9 Ledigingstijd IT-riool Warandeplein

Onderdeel	Lengte in m $(2 x)$	Ledigingstijd in dagen	Ledigingstijd in uren
IT-riool Warandeplein	24	0,24	5,8

3.3. Doorkijk hevige neerslag

Om overlast en schade te voorkomen dient een doorkijk gemaakt te worden in geval van hevige neerslag. Dat is de situatie waarbij het systeem het water niet kan verwerken. Belangrijk daarbij is het aanbrengen van een overloopvoorziening. In de nabije omgeving van de projectlocatie is geen open water of groen beschikbaar. Het is een mogelijkheid om de infiltratievoorzieningen te voorzien van een overloopvoorziening, deze kan worden aangesloten op het gemeentelijk rioolstelsel. Tijdens nadere technische uitwerking zal dit verder uitgewerkt worden.

De infiltratievoorzieningen van de individuele woningen dienen eveneens te worden voorzien van een overloop. Daarvoor wordt geadviseerd om de regenpijpen te voorzien van bladvangers en deze net boven maaiveld aan te brengen. Hierdoor kan bij overbelasting van de voorziening het overtollige hemelwater op het maaiveld worden geloosd en aan de voorzijde van de woningen oppervlakkig afstromen naar het openbaar gebied.

4. Conclusie, aandachtspunten en adviezen

4.1. Conclusie

Voor de afwatering van de Mariakerk en de grondgebonden woningen zijn infiltratievoorzieningen ontworpen. Op basis van de voorkeur van de ontwikkelaar voor de individuele voorzieningen en de voorkeur van de gemeente voor de openbare voorziening is het ontwerp uitgewerkt met infiltratiekratten voor de individuele woningen en een IT-riool ter plaatse van het Warandeplein. De totale benodigde waterberging bedraagt op basis van de terreinverharding, de tuinen en het dakoppervlak ca. 111,4 m³. De benodigde berging zal worden verdeeld over een grote voorziening (59,9 m^{3}, Mariakerk, terreinverharding en de bijgebouwen VVE) ter plaatse van het Warandeplein en 9 kleine voorzieningen ($6,4 \mathrm{~m}^{3}$ per perceel ten behoeve van de individuele woningen) in de particuliere achtertuin.

Uit de berekeningen van de ledigingstijd blijkt dat de infiltratiekratten voldoen aan een ledigingstijd van 24 uur.

Om schade te voorkomen bij hevige neerslag dienen de infiltratievoorzieningen te worden voorzien van een overloopvoorziening, welke kan worden aangesloten op het gemeentelijk rioolstelsel. De regenpijpen dienen daarnaast te worden voorzien van bladvangers en net boven het maaiveld te worden aangebracht, waarmee bij overbelasting het water oppervlakkig kan afstromen naar openbaar gebied.

4.2. Aandachtspunten en adviezen
 Kolken

Om het systeem goed te laten werken dient zoveel mogelijk vuil te worden afgevangen voordat het water in de voorziening stroomt. De kolken dienen daarom van voldoende zandvang en een bladvanger te worden voorzien. De kolken kunnen rechtstreeks aangesloten worden op het pakket.

Ontluchting

De infiltratievelden dienen ieder te worden voorzien van ontluchting. Bij de bergingsvoorziening onder het plein is dit mogelijk door een ontluchtingsdeksel toe te voegen aan de inspectieputten. Voor de particuliere voorzieningen dient een separate ontluchting te worden aangebracht.

Bouwpeil

Om overlast in de woningen te voorkomen bij extreme neerslag dient het bouwpeil voldoende hoog te zijn ten opzichte van de omringende openbare ruimte. Indien overtollig water (dat niet geborgen kan worden in de voorziening) in de openbare ruimte terecht komt via de overstortvoorzieningen kan dit dan geen schade veroorzaken in de woningen.

Warandeplein deels open verharding
Uitgangspunt voor het Warandeplein betreft volledig 'gesloten' verharding. Indien bij andere uitwerking ervoor gekozen wordt om van het Warandeplein ca. 50% in waterdoorlatende verharding uit te voeren dan bedraagt de totale benodigde berging hiervoor $46,1 \mathrm{~m}^{3}$ in plaats van $59,9 \mathrm{~m}^{3}$.

